From Yesterday

a) $x^{2}-4 x-5$

M:-5 $=(x+1)(x-5)$
$A=-4$

$$
\frac{-5}{1.5}
$$

And a few tricky ones...
C) $y=x^{2}-9$

$$
\begin{aligned}
y & =x^{2}-9 \\
& =(x+3)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
& M:-9 \\
& A:-9
\end{aligned}
$$

$$
\begin{aligned}
& A: 0 \\
& N: 3,-3
\end{aligned}
$$

Find two numbers that multiply to 3 and add to $4 . . .$.
b)

$$
\begin{aligned}
& x^{2}-9 x+18 \\
& \text { M: } 18 \\
& =(x-3)(x-6) \\
& \text { A: }-9 \\
& N:-3,-6 \\
& \begin{array}{l}
\frac{18}{1,18} \\
2,19 \\
3,6
\end{array}
\end{aligned}
$$

d) $y=x^{2}+7 x$
$=(x+0)(x+7)$
M: O
A: 7
$N: 0,7$
2.8 Factoring $a x^{2}+b x+c$
today we will add one more step...factoring $a x^{2}+b x+c$ where " a " is a common factor

Ex 1: Factor fully
a) $2 x^{2}+12 x+10$

$$
\begin{aligned}
& =2\left(x^{2}+6 x+5\right) \\
& =2(x+1)(x+5)
\end{aligned}
$$

b) $3 x^{2}-9 x-30$

$$
\begin{aligned}
& =3\left(x^{2}-3 x-10\right) \\
& =3(x-5)(x+2)
\end{aligned}
$$

Now you try:
Fully factor.
a) $2 x^{2}-20 x+6$
b) $3 x^{2}+21 x-180$

$$
=2\left(x^{2}-10 x+3\right)
$$

DONE!

$$
\begin{array}{ll}
=3\left(x^{2}+7 x-60\right)^{=3(x-5)(x+12)} & \text { M:-60 } \\
& \text { A: } 7 \\
& \text { Ni -5, } 12
\end{array}
$$

$$
\begin{aligned}
& \stackrel{\text { Check }}{ } \\
& 3(x-5)(x+12) \\
= & 3\left(x^{2}+12 x-5 x-60\right) \\
= & 3\left(x^{2}+7 x-60\right) \\
= & 3 x^{2}+21 x-180
\end{aligned}
$$

$$
-\frac{60}{1,60}
$$

$$
2,30
$$

$$
3,20
$$

$$
4,15
$$

$$
5,12
$$

$$
6,10
$$

Ex. 2 tricky ones
Fully factor.

Ex 3: Using factoring to simplify the following formula

$$
\begin{array}{rl}
S A_{\text {cylinder }} & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi r(r+h) \\
\prod_{2} & 10
\end{array}
$$

If a cylinder has a radius of 3 cm and a height of 10 cm , find the surface area.

Method 1:
Using original expression
$=2 \pi(3)^{2}+2 \pi(3)(10)$

Method 2:
Using factored expression
$=2 \pi(3)(3+10)$

Homework

p. 259 \#1-6 eoo (DO NOT expand. To check you can use the back of the book) $7,8 a, 8 b$ (Calculate the SA of one container using the given equation then the equation in factored form. Are the answers the same?), $9 a$

FACTORING QUIZ....Next Lesson!!!

